Příklady:

- 1) Určete maximální intervaly, na kterých je funkce $f(x) = x^2 e^{-x}$ rostoucí, resp. klesající.
- 2) Určete rovnici normály k funkci $f(x) = x \frac{4}{x^2}$ v bodě T[1,?].
- 3) Vypočítejte z maticové rovnice matici X:

$$XA - A = B$$

$$A = \begin{pmatrix} 2 & 1 \\ 1 & -1 \end{pmatrix}, B = \begin{pmatrix} 5 & 1 \\ -3 & 0 \end{pmatrix}$$

4) Určete limitu

$$\lim_{x \to 4} \frac{2\sqrt{x} - 4}{\sqrt{2x + 1} - 3}$$

Teorie:

Scanned by CamScanner

1) Napište základní větu lineárního programování.

2) Vysvětlete pojem singulární matice. Co platí pro její hodnost a determinant?

1)
$$Df = R$$

$$\int_{-1}^{1} = 2xe^{-x} + x^{2}e^{-x}(-1) = e^{-x}(2x - x^{2})$$

$$= e^{-x}(2x - x^{2}) = 0$$

$$= e^{-x}(2x - x^{2}) = 1 + e^{-x}(2x - x^{2})$$

$$= e^{-x}(2x - x^{2}) = 1 + e^{-x}(2x - x^{2})$$

$$= e^{-x}(2x - x^{2}) = 1 + e^{-x}(2x - x^{2})$$

$$= e^{-x}(2x - x^{2}) = 1 + e^{-x}(2x - x^{2})$$

$$= e^{-x}(2x - x^{2}) = 1 + e^{-x}(2x - x^{2})$$

$$= e^{-x}(2x - x^{2}) = 1 + e^{-x}(2x - x^{2})$$

$$= e^{-x}(2x - x^{2}) = 1 + e^{-x}(2x - x^{2})$$

$$= e^{-x}(2x - x^{2}) = 1 + e^{-x}(2x - x^{2})$$

$$= e^{-x}(2x - x^{2}) = 1 + e^{-x}(2x - x^{2})$$

$$= e^{-x}(2x - x^{2}) = 1 + e^{-x}(2x - x^{2})$$

$$= e^{-x}(2x - x^{2}) = 1 + e^{-x}(2x - x^{2})$$

$$= e^{-x}(2x - x^{2}) = 1 + e^{-x}(2x - x^{2})$$

$$= e^{-x}(2x - x^{2}) = 1 + e^{-x}(2x - x^{2})$$

$$= e^{-x}(2x - x^{2}) = 1 + e^{-x}(2x - x^{2})$$

$$= e^{-x}(2x - x^{2}) = 1 + e^{-x}(2x - x^{2})$$

$$= e^{-x}(2x - x^{2}) = 1 + e^{-x}(2x - x^{2})$$

$$= e^{-x}(2x - x^{2}) = 1 + e^{-x}(2x - x^{2})$$

$$= e^{-x}(2x - x^{2}) = 1 + e^{-x}(2x - x^{2})$$

$$= e^{-x}(2x - x^{2}) = 1 + e^{-x}(2x - x^{2})$$

$$= e^{-x}(2x - x^{2}) = 1 + e^{-x}(2x - x^{2})$$

$$= e^{-x}(2x - x^{2}) = 1 + e^{-x}(2x - x^{2})$$

$$= e^{-x}(2x - x^{2}) = 1 + e^{-x}(2x - x^{2})$$

$$= e^{-x}(2x - x^{2}) = 1 + e^{-x}(2x - x^{2})$$

$$= e^{-x}(2x - x^{2}) = 1 + e^{-x}(2x - x^{2})$$

$$= e^{-x}(2x - x^{2}) = 1 + e^{-x}(2x - x^{2})$$

$$= e^{-x}(2x - x^{2}) = 1 + e^{-x}(2x - x^{2})$$

$$= e^{-x}(2x - x^{2}) = 1 + e^{-x}(2x - x^{2})$$

$$= e^{-x}(2x - x^{2}) = 1 + e^{-x}(2x - x^{2})$$

$$= e^{-x}(2x - x^{2}) = 1 + e^{-x}(2x - x^{2})$$

$$= e^{-x}(2x - x^{2}) = 1 + e^{-x}(2x - x^{2})$$

$$= e^{-x}(2x - x^{2}) = 1 + e^{-x}(2x - x^{2})$$

$$= e^{-x}(2x - x^{2}) = 1 + e^{-x}(2x - x^{2})$$

$$= e^{-x}(2x - x^{2}) = 1 + e^{-x}(2x - x^{2})$$

$$= e^{-x}(2x - x^{2}) = 1 + e^{-x}(2x - x^{2})$$

$$= e^{-x}(2x - x^{2}) = 1 + e^{-x}(2x - x^{2})$$

$$= e^{-x}(2x - x^{2}) = 1 + e^{-x}(2x - x^{2})$$

$$= e^{-x}(2x - x^{2}) = 1$$

Příklady:

- 1) Najděte inflexní body funkce $f(x) = x^4 + 2x^3 12x^2$.
- Řešte soustavu rovnic pomocí matic:

$$2x + 4y - z = 0$$
$$4x - 6y - 3z = 0$$
$$x + y - 2z = 0$$

3) Určete limitu

$$\lim_{x \to 0} \frac{arctg \ 2x}{arcsin(-x)}$$

4) Nalezněte maximum funkce $z = 400x_1 + 600x_2$ za podmínek:

$$\begin{array}{ccc} 2x_1 & +x_2 & \leq 6000 \\ x_1 & +x_2 & \leq 4000 \\ & \cdot x_2 & \leq 3000 \\ & x_1, x_2 \geq 0 \end{array}$$

Teorie:

- 1) Vysvětlete, co je to normála, a jak určíme rovnici normály ke grafu funkce fv bodě x_0 ?

1)				1		1007	S. P. WHEN THE PARTY.	
4)		X	X	X ₃	X	V .	16	
	×3	2	1	1	X4	×5	6000	
	Xy	1	1	0	1	0	4000	
	X5	0	1	0	0	1	(3000)	
	2	-400	(-600)	0	0	0	0	
	λ_3	2	0	1	0	-1	3000	1500
	×4	11	0	0	1	-1	1000	(1000)
	X2	0	1	0	0	1	3000	=
	R	W -	400 0	0	0	600	18 00 000	
	×3	0	0	1	-2	1	1000	
	X1	1	0	0	1	-1	1000	
	X2	0	1	0	0	1	3000	
	12	0	0	0	400	200	2200 000	/
					1000			
					300			200 000
				×3 =	1000)	12 = 2	200 000
				×4=	0			
				X5 =	0			

Příklady:

- 1) Určete intervaly, na kterých je funkce $f(x) = \frac{x^2}{x^2 4}$ rostoucí, resp. klesající.
- 2) Určete hodnost matice

$$\begin{pmatrix} 1 & 0 & -1 & 2 \\ 2 & 2 & 1 & -1 \\ 3 & 1 & 0 & 2 \\ 1 & 1 & -1 & 1 \end{pmatrix}$$

3) Nalezněte maximum funkce $z = 5x_1 + x_2 + 3x_3$ za podmínek:

$$3x_1 + 2x_2 + 4x_3 \le 4$$
$$2x_1 + 2x_3 \le 2$$
$$x_1, x_2 \ge 0$$

4) Vypočítejte neznámou y pomocí Cramerova pravidla.

$$x+y-z=-1$$
$$2x-y+2z=8$$
$$x-3y+2z=3$$

Teorie:

3) Napište vzorec pro výpočet Taylorova polynomu.
4) Napište L'Hospitalovo pravidlo a uveďte jednoduchý příklad.
1)
$$Df = R - f - 2$$
, $2f$

$$J = \frac{2x(x^2 - 4) - x^2}{(x^2 - 4)^2} = \frac{2x^3 - 3x - 2x^3}{(x^2 - 4)^2} = \frac{-3x}{(x^2 - 4)^2}$$

$$(x^2 - 4)^2 = \frac{-3x}{(x^2 - 4)^2}$$

2)
$$\begin{pmatrix} 10 - 12 \\ 22 & 1 - 1 \\ 31 & 02 \end{pmatrix}$$
 $\begin{pmatrix} 10 - 12 \\ 02 & 3 - 5 \\ 01 & 0 - 1 \end{pmatrix}$ $\begin{pmatrix} 10 - 12 \\ 023 - 5 \\ 00 & -33 \end{pmatrix}$ $\begin{pmatrix} 1 & 0 - 12 \\ 0 & 0 & -33 \end{pmatrix}$ $\begin{pmatrix} 1 & 0 - 12 \\ 0 & 0 & -33 \end{pmatrix}$

4)
$$A = \begin{vmatrix} 1 & 1 & -1 \\ 2 & -1 & 2 \end{vmatrix} = -2 + 6 + 2 - 1 + 6 - 4 \begin{vmatrix} 2 & 8 & 2 \\ 1 & -3 & 2 \end{vmatrix} = \frac{|A|}{|A|} = \frac{|A|}{|A|} = \frac{2}{|A|}$$

				17/11/	1 7/2	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
		×.	1)	ra X	3 X4	X5-	16	
	×4 ×5	13	2	4	1	0	14	43
_	X5	12	0	2	0	1	12	9
1.	2	F-5] -1	-3	0	0	10	
×	4	0	(2)	1	1	-3	1	-
X	1	1	0	1	0	-32	1	2
R	2	0	(1)	2		1 2	1	=
×	2	0	1	12	0	52	5	
× - /	212	1	0	1	120	-34	12	
		0	0	ちつる	1/2	2	1	
						4	11 2	
				X1	= 1			
				×2				
					$= x_4 = 0$	x_==() 2	$=\frac{11}{2}$
				9	7	5		1