Racionální číslo $0 . \overline{3}$ vyjádřené jako zlomek v základním tvaru má v čitateli číslo
(A) 1
(B) 3
(C) 5
(D) 2
(E) jiná odpověd’

Je dáno 8 -ciferné číslo $263798 x 4$. Aby bylo toto číslo dělitelné 12 , musí se cifra x rovnat
(A) 4
(B) 0
(C) 1
(D) 8
(E) jiná odpověd’

Výraz $\frac{\sqrt[3]{h}}{\sqrt{g}}: \frac{g^{-1}}{h^{-\frac{2}{3}}}$ lze zjednodušit na
(A) $\frac{\sqrt[3]{g}}{\sqrt{h}}$
(B) $\frac{\sqrt{h}}{\sqrt[3]{g}}$
(C) $\frac{\sqrt[3]{h}}{\sqrt{g}}$
(D) $\frac{\sqrt{g}}{\sqrt[3]{h}}$
(E) Nelze zjednodušit na žádný z uvedených.

Výraz $\quad \frac{2}{\sqrt{2}}+\frac{1}{1-\sqrt{2}} \quad$ lze upravit na tvar:
(A) -1
(B) 1
(C) $2 \sqrt{2}-1$
(D) $2 \sqrt{2}+1$
(E) Nelze upravit na žádný z uvedených tvarů.

Hodnota $\operatorname{nsn}(12,20)-\operatorname{NSD}(78,96)$ je rovna
(A) 37
(B) 54
(C) 57
(D) 62
(E) jiná odpověd’

Zjednodušte:

$$
\frac{\sqrt{27}-\sqrt{12}}{\sqrt{75}}
$$

$\sqrt{\frac{\left(x \cdot \sqrt[3]{x^{2}}\right)^{-3}}{\sqrt{x^{3} \cdot \sqrt[3]{x}}}}=$
$\left(\frac{4 x^{3}}{x^{3}-y^{3}}: \frac{2 x^{3}}{x^{2}-2 x y+y^{2}}\right) \cdot \frac{x^{2}+y(x+y)}{x^{2}-y^{2}}$

